方求解’,内容是对于最小均方算法,也就是LMS算法的改进。
西弥斯-戈尔利克斯上台以后,就骄傲的宣布,“我们找到了一种最为快速、最为准确的最小均方求解方法,这种方法可以让计算复杂度降低两个数量级以上,并且不会损失精度和改善的数值稳定性。”
这句话说出来立刻引起会场一片哗然。
最小均方求解是许多机器学习算法的核心,能够让计算复杂度降低两个以上数量级,可不是开玩笑的,那已经不是改善,而是‘跨越式的进步’。
比如,计算一个问题需要一亿次运算,下降两个数量级就变成了一百万次。
这显然是质的飞跃。
西弥斯-戈尔利克斯开始认真讲解说起来,他的同事阿尔马洛夫则在旁边做补充讲解,他们提出了一个非常新颖的分治法,然后用离散傅里叶变换算法,充当整体构架的‘掌舵’。
王浩听到这里顿时有精神了。
他感觉‘掌舵’内容似乎有些熟悉,再继续听下去就明白过来。
后面的研究内容对于自己的‘傅里叶变换辅助构建数学模型’,肯定是存在一定的借鉴和参考。
“抄袭?”
“不,应该说是应用。”
发表出来的论文内容,被用作其他研究的参考,也是很正常的事情,只要论文上带上‘参考文献’就可以了。
这倒是没关系。
不过王浩继续听下去,就不由得皱起了眉头,他发现对方的研究是存在问题的,尤其牵扯到离散傅里叶变换算法,合并‘分治法’支撑降低计算复杂度,到了两个数量级就出问题了。
报告进行了一个小时左右,西弥斯-戈尔利克斯完成大部分讲解,他讲解的都是‘大致方向’,也停下来休息了一下,也让会场众人做个消化。
其他人都在惊叹报告成果,王浩则是喊了一句,“戈尔利克斯先生!”
西弥斯-戈尔利克斯马上注意到王浩,疑惑问道,“这位年轻的先生,有什么问题?”
会场众人顿时看过来。
王浩站起来说道,“你的报告很精彩,我指的是前面,但是第二部分,用离散傅里叶变换对于整体计算进行构架,我认为,是有问题的。”
“离散傅里叶变换和你的‘分治法’相结合,在计算超大数或是超多计算量时,比如,超过兆亿次计算,所塑造承受的复杂性的核集,不可能把所有的解包含进去。”
“你
本章未完,请点击下一页继续阅读!