度,似乎也根本就不重要了。
王浩思考着点头。
他自然知道新发现有多么重大,依靠一种全新的金属材料,常温下实现激发反重力场,成果发布出去肯定会震惊世界。
但是,他思考的是背后的原理。
“临界温度只有149k,却能在常温,也就是接近300k的环境下,激发出反重力特性……”
“这就说明导电状态下,内部形成的半拓扑结构非常不稳定。”
“是因为一阶铁吧?”
“……”
一阶铁基超导材料的常温反重力现象,确实是个非常惊人的发现,但对于理论研究可不是个好消息。
王浩发现有了新发现以后,就更加无法用原本研究出的理论,去套用一阶铁元素以及相关材料上。
半拓扑理论,对一阶铁完全不起作用。
其他相关的理论内容,也根本无法用于研究一阶铁,甚至还让一阶铁以及所组成的超导材料,对比常规的反重力材料、超导材料,表现出了‘几乎无关’的性态趋向。
王浩找到了反重力材料相关的实验数据,打算针对各种材料、性态表现以及反重力特性进行分析。
一直到现在,确定拥有反重力特性的材料有十四种。
其中有三种是高压混合超导材料,剩下的都是金属超导材料,十四种材料可以分为两类。
王浩把材料放在一起做研究,发现数据和想象中的一样混乱。
这些材料中,有的材料制造出的反重力场强度高达65%,有的材料最高则只有0.75%。
有几种材料在高于临界温度时,也能够表现出反重力特性特性,尤其是几种高压混合超导材料,当高于临界温度的状态下时,所制造出的反重力场强度反倒更高一些。
当把所有的资料放在一起的时候,王浩只是草草的看了一遍,就感觉非常的头疼。
他发现很难找出材料和反重力特性之间的相关性。
后来,他干脆把材料分为两类,一种就是一阶铁基超导材料,另外一种就是常规的超导材料,高压混合超导材料也被归在第二类。
两者做对比,就发现了一点点规律。
“一阶铁,提升了激发反重力场的温度阈值?”
“同时,一阶铁基超导材料,制造的反重力场普遍强度不高,还是因为半拓扑结构不稳定?”
“那就是原因吧!”
“这种
本章未完,请点击下一页继续阅读!