亦或者仿星器,都有着各自的缺点。”
“托卡马克是目前较为主流的磁约束方式,具有反应产生的废物极少,可再生性好等优点,但目前仍然存在技术难点,比如如何稳定约束等离子体等。”
“而仿星器虽然在能量约束方面有先天的优势,对等离子体的约束远超托卡马克,但仿星器的约束性能远低于的托卡马克,而且它目前来看暂时还做不到实现精确的准对称。这意味着任何对称性的微小破坏都可能会导致新古典传输的显著增强。”
彭鸿禧好奇的问道:“那你的选择是?”
徐川笑了笑,开口道:“多重磁镜紧箍环形控制。”
“多重磁镜紧箍环形控制?”彭鸿禧重复了一句,眼神中带着些不解,要说搞核聚变他也做了这么多年了,这个名词还真是第一次听说。
当然,从名字来说,他大抵也能理解这是个什么东西。只是说,这装置似乎并没有先例的样子,等于说是从一无所有开始。而难度方面就更不用说了,可控核聚变本身就是一个超级难题,再从头开始弄,天知道要什么时候才能出那么一点成果。
徐川点了点头,眼神有些飘忽,似乎陷入了回忆或者其他事情中,不过这并没有耽搁他与彭鸿禧的交流。
“尽管托卡马克和仿星器发展到现在已经成为了两种几乎完全不同的聚变装置,但如果抛开形状等差异,它们其实都是基于磁约束原理而做出来的。”
“仿星器的优点在于它可以直接通过外部线圈产生扭曲的环形磁笼,从而增强对等离子体的约束,但托卡马克不行,它本身的结构做不到。”
“但如果将两者的一部分互相结合用于制造一个新型的聚变装置呢?”
“而多重磁镜紧箍环形控制装置就是以这种理念为基础而构思出来的新设备它是在托卡马克装置和仿星器装置上做的进一步优化,结合球形床的部分设计而做出来的一种新东西。”
顿了顿,徐川从走神中回过注意力,冲彭鸿禧笑了笑,顺带补了一句:“当然,目前它还只存在于我的脑海中。”
的确,多重磁镜紧箍环形控制装置目前还只存在他的脑海中,但在未来可不是。
上辈子在普林斯顿的时候,他获得了支持,对普林斯顿等离子体物理实验室的球形圆环实验磁聚变设备(NSTX-U)进行了改造。
改造后的NSTX-U升级成了NSTX-UX1,而NSTX-UX1实现了长达三十分钟的聚变反应控制。
本章未完,请点击下一页继续阅读!